Mini private key format: Difference between revisions

From Bitcoin Wiki
Jump to navigation Jump to search
Bezzeb (talk | contribs)
m →‎Web: Fixing broken link
Taras (talk | contribs)
mNo edit summary
 
(5 intermediate revisions by 5 users not shown)
Line 1: Line 1:
[[Image:QR-privkeys-sidebyside.png|thumb|right|QR codes of the same private key, in mini versus regular private key format. Both codes have the same dot density and error correction level, but the mini key is 57% of the full code's size.]]
[[Image:QR-privkeys-sidebyside.png|thumb|right|Comparison of QR codes of the same private key, encoded in mini private key format (left) and [[wallet import format]] (right). Both codes have the same dot density and error correction level, but the mini key is 57% of the full code's size.]]
The '''mini private key format''' is a method of encoding a Bitcoin private key in as few as 30 characters so that it can be embedded in a small space. This private key format was first used in Casascius physical bitcoins, and is also favorable for use in QR codes.  The fewer characters encoded in a QR code, the lower dot density can be used, as well as more dots allocated to error correction in the same space, significantly improving readability and resistance to damage. The mini private key format offers its own built-in check code as a small margin of protection against typos.
[[Image:Redeemed Denarium physical bitcoin.jpg|thumb|right|A minikey in a small space on a physical bitcoin]]
{{sample}}
The '''mini private key format''' is a method of encoding a Bitcoin private key in as few as 30 characters for the purpose of being embedded in a small space. A private key encoded in this format is called a '''minikey'''. This private key format was designed for and first used in [[Casascius physical bitcoins]], and is also favorable for use in QR codes.  The fewer characters encoded in a QR code, the lower dot density can be used, as well as more dots allocated to error correction in the same space, significantly improving readability and resistance to damage. The mini private key format offers its own built-in check code as a small margin of protection against typos.


An example key using this encoding is '''S6c56bnXQiBjk9mqSYE7ykVQ7NzrRy'''.
Casascius Series 1 holograms use a 22-character variant of the minikey format, instead of 30 characters. Everything is the same other than the length. To properly implement minikey redemption, services and clients must support the 30-character format, but may optionally support the 22-character format as well to allow redemption of old Casascius coins. Use of the 22-character format for future applications is discouraged due to security considerations; the standard 30-character format should be used instead.


==Usage on a physical bitcoin==
An example key using this encoding is '''S6c56bnXQiBjk9m{{taggant private key}}qSYE7ykVQ7NzrRy'''.
The way it might appear within a physical bitcoin is on a round card printed as follows:


Side of discs showing mini private key: (from [[Casascius physical bitcoins]])<br/>
==Usage==
[[Image:Miniprivkeys.jpg|300px]]
===Physical bitcoins===
{{multiple image|align=vertical|width=300
|image1=Miniprivkeys.jpg
|image2=Minipubkeys.jpg
|footer=Paper disc inserts for [[Casascius physical bitcoins|Casascius coins]] with minikeys on the obverse (top) and corresponding address prefixes on the reverse (bottom)
}}
Minikeys are used extensively on physical bitcoins, because their small size allows them to be printed and read easily even on tiny surfaces inside the coins. Typically, a small paper or plastic disc is placed behind a tamper-evident security hologram on the back of a metal coin or bar, with the minikey printed on the inside such that it can only be read if the security hologram is removed.


Side of discs showing prefix of bitcoin address (printed on the opposite side):<br/>
Some physical bitcoins include a window in the security hologram to view the back of this disc, which includes the prefix of the address corresponding to the hidden minikey.
[[Image:Minipubkeys.jpg|300px]]


The examples in this article use the private key and Bitcoin address of the leftmost circle in the above two photos.
===1D barcodes===
The mini private key is small enough to fit in a one-dimensional barcode while still remaining practical.  Among the most popular one-dimensional barcode symbologies, the one known as "Code 128" is best suited for encoding a minikey due to its favorable data density and support for mixed case strings.  The variant known as "Code 128-B" produces the shortest code for strings containing lowercase characters.


==Usage in bar codes==
The sample private minikey encoded with Code 128-B looks like this:
 
[[Image:Private_minikey_in_1D_barcode.gif]]
 
===2D barcodes===
The mini private key is suitable for use in QR codes.  The recommended settings for maximizing readability are: QR version 3, error correction level Q (near highest, 25% possible lost codeword recovery).  This results in a 29x29 grid.  A minikey QR code can also fit in a 25x25 grid with QR version 2, error correction level L (lowest, 7% possible lost codeword recovery).
The mini private key is suitable for use in QR codes.  The recommended settings for maximizing readability are: QR version 3, error correction level Q (near highest, 25% possible lost codeword recovery).  This results in a 29x29 grid.  A minikey QR code can also fit in a 25x25 grid with QR version 2, error correction level L (lowest, 7% possible lost codeword recovery).


Line 21: Line 32:


[[Image:Private_minikey_in_2D_barcode.gif]]
[[Image:Private_minikey_in_2D_barcode.gif]]
The mini private key is small enough to fit in a one-dimensional barcode while still remaining practical.  Among the most popular one-dimensional barcode symbologies, the one known as "Code 128" is best suited for encoding a minikey due to its favorable data density and support for mixed case strings.  The variant known as "Code 128-B" produces the shortest code for strings containing lowercase characters.
The sample private minikey encoded with Code 128-B looks like this:
[[Image:Private_minikey_in_1D_barcode.gif]]


==Import==
==Import==
Line 35: Line 40:


The current mainline ("Satoshi") client cannot currently be used to import minikeys.
The current mainline ("Satoshi") client cannot currently be used to import minikeys.
===Mobile===
* Mt. Gox Mobile can redeem a private key scanned from a QR Code or is entered using the keyboard.  Upon importing, Mt. Gox sweeps the funds to a secondary address, and then a user must wait for six confirmations before the funds will appear in the Mt. Gox account.


===Web===
===Web===
Line 45: Line 46:
** Private keys can be imported into a Blockchain.info wallet and bitcoins can be sent to another address immediately upon import without needing to wait for any confirmations.  Even after import, funds remain associated with the private key until they are actually spent to a different address.
** Private keys can be imported into a Blockchain.info wallet and bitcoins can be sent to another address immediately upon import without needing to wait for any confirmations.  Even after import, funds remain associated with the private key until they are actually spent to a different address.
* [[StrongCoin]]
* [[StrongCoin]]
* [[Mt. Gox]]
** Importing minikeys is done through the deposit screen using the "Import Private Key" deposit method.  Upon importing, Mt. Gox sweeps the funds to a secondary address, and then a user must wait for six confirmations before the funds will appear in the Mt. Gox account.  Removing the imported bitcoins from the Mt. Gox account is treated as a bitcoin withdrawal and counts against daily/monthly limits.
** Mt. Gox also permanently remembers any imported private key and automatically sweeps any future funds sent to it into the user's Mt. Gox account.
** Mt. Gox's import screen doesn't properly detect or reject typos. If you make a mistake, Mt. Gox will treat it as a valid entry and report that a private key with a balance of 0.00 BTC from a bitcoin address you won't recognize was "successfully" imported.


==Decoding==
==Decoding==
Line 60: Line 57:


===Example with SHA256===
===Example with SHA256===
Here is an example with the sample private key S6c56bnXQiBjk9mqSYE7ykVQ7NzrRy.
Here is an example with the sample private key <tt>S6c56bnXQiBjk9mq{{taggant private key}}SYE7ykVQ7NzrRy</tt>.


The string "S6c56bnXQiBjk9mqSYE7ykVQ7NzrRy?" has a SHA256 value that begins with 00, so it is well-formed.
The string "<tt>S6c56bnXQiBjk9{{taggant private key}}mqSYE7ykVQ7NzrRy?</tt>" has a SHA256 value that begins with 00, so it is well-formed.


To obtain the full 256-bit private key, simply take the SHA256 hash of the entire string.  There is no encoding for line breaks in the string, even if the key is broken into multiple lines for printing.  The SHA256 should be taken of exactly thirty bytes.
To obtain the full 256-bit private key, simply take the SHA256 hash of the entire string.  There is no encoding for line breaks in the string, even if the key is broken into multiple lines for printing.  The SHA256 should be taken of exactly thirty bytes.


  SHA256("S6c56bnXQiBjk9mqSYE7ykVQ7NzrRy") = 4C7A9640C72DC2099F23715D0C8A0D8A35F8906E3CAB61DD3F78B67BF887C9AB   
  SHA256("S6c56bnXQiBjk9{{taggant private key}}mqSYE7ykVQ7NzrRy") = 4C7A9640C72DC2099F23715D0C8A0D8A35F8906E3CAB61DD3F78B67BF887C9AB   


This sample key in [[wallet export format]] is 5JPy8Zg7z4P7RSLsiqcqyeAF1935zjNUdMxcDeVrtU1oarrgnB7, and the corresponding [[Bitcoin address]] is 1CciesT23BNionJeXrbxmjc7ywfiyM4oLW.
This sample key in [[wallet import format]] is <tt>5JPy8Zg7z4P7RSLsiqcqyeAF1{{taggant private key}}935zjNUdMxcDeVrtU1oarrgnB7</tt>, and the corresponding [[Bitcoin address]] is <tt>1CciesT23BNionJe{{taggant address}}Xrbxmjc7ywfiyM4oLW</tt>.
 
==== Command line verification ====
To calculate SHA256 from the command line on OSX or Linux devices:
 
echo -n "S6c56bnXQiBjk9{{taggant private key}}mqSYE7ykVQ7NzrRy?" | shasum -a 256
 
That should output a line of text like "<tt>000f2453798ad4f951eecced2242eaef3e1cbc8a7c813c203ac7ffe57060355d  -</tt>". Since the first two characters are <tt>00</tt> the verification passes for the mini key <tt>S6c56bnXQiBjk9{{taggant private key}}mqSYE7ykVQ7NzrRy</tt>


==Check code==
==Check code==
Line 85: Line 89:


In all cases, you '''must''' use a secure cryptographic random number generator to eliminate risks of predictability of the random strings.
In all cases, you '''must''' use a secure cryptographic random number generator to eliminate risks of predictability of the random strings.
==Casascius Series 1 coins==
Casascius Series 1 Physical Bitcoins use a 22-character variant of the minikey format, instead of 30 characters.  Everything is the same other than the length.  To properly implement minikey redemption, services and clients MUST support the 30-character format, but MAY support the 22-character format as well.  Use of the 22-character format for future applications is discouraged due to security considerations.


==Python Code==
==Python Code==
Line 133: Line 133:
         except KeyboardInterrupt:
         except KeyboardInterrupt:
             break
             break
     print('\n%s: %i\n%s: %i\n%s: %r\n%s: %.1f' %
     print('\n%s: %i\n%s: %i\n%s: %.1f' %
           ('Keys Generated', keysGenerated,
           ('Keys Generated', keysGenerated,
           'Total Candidates', totalCandidates,
           'Total Candidates', totalCandidates,
          'Additional Security', additionalSecurity,
           'Reject Percentage',
           'Reject Percentage',
           100*(1.0-keysGenerated/float(totalCandidates))))
           100*(1.0-keysGenerated/float(totalCandidates))))

Latest revision as of 03:03, 10 August 2017

Comparison of QR codes of the same private key, encoded in mini private key format (left) and wallet import format (right). Both codes have the same dot density and error correction level, but the mini key is 57% of the full code's size.
A minikey in a small space on a physical bitcoin

This page contains sample addresses and/or private keys. Do not send bitcoins to or import any sample keys; you will lose your money.

The mini private key format is a method of encoding a Bitcoin private key in as few as 30 characters for the purpose of being embedded in a small space. A private key encoded in this format is called a minikey. This private key format was designed for and first used in Casascius physical bitcoins, and is also favorable for use in QR codes. The fewer characters encoded in a QR code, the lower dot density can be used, as well as more dots allocated to error correction in the same space, significantly improving readability and resistance to damage. The mini private key format offers its own built-in check code as a small margin of protection against typos.

Casascius Series 1 holograms use a 22-character variant of the minikey format, instead of 30 characters. Everything is the same other than the length. To properly implement minikey redemption, services and clients must support the 30-character format, but may optionally support the 22-character format as well to allow redemption of old Casascius coins. Use of the 22-character format for future applications is discouraged due to security considerations; the standard 30-character format should be used instead.

An example key using this encoding is S6c56bnXQiBjk9m_SAMPLE_PRIVATE_KEY_DO_NOT_IMPORT_qSYE7ykVQ7NzrRy.

Usage

Physical bitcoins

Paper disc inserts for Casascius coins with minikeys on the obverse (top) and corresponding address prefixes on the reverse (bottom)

Minikeys are used extensively on physical bitcoins, because their small size allows them to be printed and read easily even on tiny surfaces inside the coins. Typically, a small paper or plastic disc is placed behind a tamper-evident security hologram on the back of a metal coin or bar, with the minikey printed on the inside such that it can only be read if the security hologram is removed.

Some physical bitcoins include a window in the security hologram to view the back of this disc, which includes the prefix of the address corresponding to the hidden minikey.

1D barcodes

The mini private key is small enough to fit in a one-dimensional barcode while still remaining practical. Among the most popular one-dimensional barcode symbologies, the one known as "Code 128" is best suited for encoding a minikey due to its favorable data density and support for mixed case strings. The variant known as "Code 128-B" produces the shortest code for strings containing lowercase characters.

The sample private minikey encoded with Code 128-B looks like this:

2D barcodes

The mini private key is suitable for use in QR codes. The recommended settings for maximizing readability are: QR version 3, error correction level Q (near highest, 25% possible lost codeword recovery). This results in a 29x29 grid. A minikey QR code can also fit in a 25x25 grid with QR version 2, error correction level L (lowest, 7% possible lost codeword recovery).

The sample private minikey encoded as a QR code on a 29x29 grid looks like this:

Import

Mini private keys can be imported through the following clients/services:

Applications

The current mainline ("Satoshi") client cannot currently be used to import minikeys.

Web

  • BlockChain.info
    • Private keys can be imported into a Blockchain.info wallet and bitcoins can be sent to another address immediately upon import without needing to wait for any confirmations. Even after import, funds remain associated with the private key until they are actually spent to a different address.
  • StrongCoin

Decoding

The private key encoding consists of 30 alphanumeric characters from the base58 alphabet used in Bitcoin. The first of the characters is always the uppercase letter S.

To determine whether the minikey is valid:

  1. Add a question mark to the end of the mini private key string.
  2. Take the SHA256 hash of the entire string. However, we will only look at the first byte of the result.
  3. If the first byte is 00, the string is a well-formed minikey. If the first byte is not 00, the string should be rejected as a minikey.

Example with SHA256

Here is an example with the sample private key S6c56bnXQiBjk9mq_SAMPLE_PRIVATE_KEY_DO_NOT_IMPORT_SYE7ykVQ7NzrRy.

The string "S6c56bnXQiBjk9_SAMPLE_PRIVATE_KEY_DO_NOT_IMPORT_mqSYE7ykVQ7NzrRy?" has a SHA256 value that begins with 00, so it is well-formed.

To obtain the full 256-bit private key, simply take the SHA256 hash of the entire string. There is no encoding for line breaks in the string, even if the key is broken into multiple lines for printing. The SHA256 should be taken of exactly thirty bytes.

SHA256("S6c56bnXQiBjk9_SAMPLE_PRIVATE_KEY_DO_NOT_IMPORT_mqSYE7ykVQ7NzrRy") = 4C7A9640C72DC2099F23715D0C8A0D8A35F8906E3CAB61DD3F78B67BF887C9AB  

This sample key in wallet import format is 5JPy8Zg7z4P7RSLsiqcqyeAF1_SAMPLE_PRIVATE_KEY_DO_NOT_IMPORT_935zjNUdMxcDeVrtU1oarrgnB7, and the corresponding Bitcoin address is 1CciesT23BNionJe_SAMPLE_ADDRESS_DO_NOT_SEND_Xrbxmjc7ywfiyM4oLW.

Command line verification

To calculate SHA256 from the command line on OSX or Linux devices:

echo -n "S6c56bnXQiBjk9_SAMPLE_PRIVATE_KEY_DO_NOT_IMPORT_mqSYE7ykVQ7NzrRy?" | shasum -a 256

That should output a line of text like "000f2453798ad4f951eecced2242eaef3e1cbc8a7c813c203ac7ffe57060355d -". Since the first two characters are 00 the verification passes for the mini key S6c56bnXQiBjk9_SAMPLE_PRIVATE_KEY_DO_NOT_IMPORT_mqSYE7ykVQ7NzrRy

Check code

The mini private key format offers a simple typo check code. Mini private keys must be generated in a "brute force" fashion, keeping only keys that conform to the format's rules. If a key is well-formed (30 Base58 characters starting with S), but fails the hash check, then it probably contains a typo.

If the SHA256 hash of the string followed by '?' doesn't result in something that begins with 0x00, the string is not a valid mini private key.

Creating mini private keys

Creating mini private keys is relatively simple. One program which can create such keys is Casascius Bitcoin Utility.

Mini private keys must be created "from scratch", as the conversion from mini private key to full-size private key is one-way. In other words, there is no way to convert an existing full-size private key into a mini private key.

To create mini private keys, simply create random strings that satisfy the well-formedness requirement, and then eliminate the ones that do not pass the typo check. (This means eliminating more than 99% of the candidates.) Then use the appropriate algorithm to compute the corresponding private key, and in turn, the matching Bitcoin address. The Bitcoin address can always be computed from just the private key.

It is strongly advisable to avoid using the digit "1" in minikeys unless it is being printed in such a way where a user is unlikely to mistake it for the lowercase letter "l". Few clients and redemption tools are prepared to tell the user that their entry containing the letter "l" should actually be the number "1" - rather, they will simply reject the code and may leave the user confused.

In all cases, you must use a secure cryptographic random number generator to eliminate risks of predictability of the random strings.

Python Code

The following code produces sample 30-character SHA256-based mini private keys in Python. For real-world use, random must be replaced with a better source of entropy, as the Python documentation for random states the function "is completely unsuitable for cryptographic purposes".

import random
import hashlib

BASE58 = '23456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'

def Candidate():
    """
    Generate a random, well-formed mini private key.
    """
    return('%s%s' % ('S', ''.join(
        [BASE58[ random.randrange(0,len(BASE58)) ] for i in range(29)])))

def GenerateKeys(numKeys = 10):
    """
    Generate mini private keys and output the mini key as well as the full
    private key. numKeys is The number of keys to generate, and 
    """
    keysGenerated = 0
    totalCandidates = 0
    while keysGenerated < numKeys:
        try:
            cand = Candidate()
            # Do typo check
            t = '%s?' % cand
            # Take one round of SHA256
            candHash = hashlib.sha256(t).digest()
            # Check if the first eight bits of the hash are 0
            if candHash[0] == '\x00':
                privateKey = GetPrivateKey(cand)
                print('\n%s\nSHA256( ): %s\nsha256(?): %s' %
                      (cand, privateKey, candHash.encode('hex_codec')))
                if CheckShortKey(cand):
                    print('Validated.')
                else:
                    print('Invalid!')
                keysGenerated += 1
            totalCandidates += 1
        except KeyboardInterrupt:
            break
    print('\n%s: %i\n%s: %i\n%s: %.1f' %
          ('Keys Generated', keysGenerated,
           'Total Candidates', totalCandidates,
           'Reject Percentage',
           100*(1.0-keysGenerated/float(totalCandidates))))

def GetPrivateKey(shortKey):
    """
    Returns the hexadecimal representation of the private key corresponding
    to the given short key.
    """
    if CheckShortKey(shortKey):
        return hashlib.sha256(shortKey).hexdigest()
    else:
        print('Typo detected in private key!')
        return None

def CheckShortKey(shortKey):
    """
    Checks for typos in the short key.
    """
    if len(shortKey) != 30:
        return False
    t = '%s?' % shortKey
    tHash = hashlib.sha256(t).digest()
    # Check to see that first byte is \x00
    if tHash[0] == '\x00':
        return True
    return False