Difference between revisions of "Secp256k1"
(Added interwiki link to new Spanish article) |
|||
Line 19: | Line 19: | ||
* ''n'' = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141 | * ''n'' = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141 | ||
* ''h'' = 01 | * ''h'' = 01 | ||
+ | |||
+ | [[es:Secp256k1]] |
Revision as of 18:22, 10 December 2012
secp256k1 refers to the parameters of the ECDSA curve used in Bitcoin, and is defined in Standards for Efficient Cryptography (SEC) (Certicom Research, http://www.secg.org/collateral/sec2_final.pdf).
As excerpted from Standards:
The elliptic curve domain parameters over F_{p} associated with a Koblitz curve secp256k1 are specified by the sextuple T = (p,a,b,G,n,h) where the finite field F_{p} is defined by:
- p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
- = 2^{256} - 2^{32} - 2^{9} - 2^{8} - 2^{7} - 2^{6} - 2^{4} - 1
The curve E: y^{2} = x^{3}+ax+b over F_{p} is defined by:
- a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
- b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007
The base point G in compressed form is:
- G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
and in uncompressed form is:
- G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8
Finally the order n of G and the cofactor are:
- n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
- h = 01