Secp256k1: Difference between revisions
Jump to navigation
Jump to search
Created page with "'''secp256k1''' refers to the parameters of the ECDSA curve used in Bitcoin, and is defined in ''Standards for Efficient Cryptography (SEC)'' (Certicom Research, http://ww..." |
No edit summary |
||
Line 15: | Line 15: | ||
* ''G'' = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 | * ''G'' = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 | ||
and in uncompressed form is: | and in uncompressed form is: | ||
* ''G'' = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 | * ''G'' = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8 | ||
A6855419 9C47D08F FB10D4B8 | Finally the order ''n'' of ''G'' and the cofactor are: | ||
Finally the order ''n'' of G and the cofactor are: | |||
* ''n'' = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141 | * ''n'' = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141 | ||
* ''h'' = 01 | * ''h'' = 01 |
Revision as of 16:51, 29 November 2011
secp256k1 refers to the parameters of the ECDSA curve used in Bitcoin, and is defined in Standards for Efficient Cryptography (SEC) (Certicom Research, http://www.secg.org/collateral/sec2_final.pdf).
As excerpted from Standards:
The elliptic curve domain parameters over Fp associated with a Koblitz curve secp256k1 are specified by the sextuple T = (p,a,b,G,n,h) where the finite field Fp is defined by:
- p = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE FFFFFC2F
- = 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1
The curve E: y2 = x3+ax+b over Fp is defined by:
- a = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
- b = 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000007
The base point G in compressed form is:
- G = 02 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798
and in uncompressed form is:
- G = 04 79BE667E F9DCBBAC 55A06295 CE870B07 029BFCDB 2DCE28D9 59F2815B 16F81798 483ADA77 26A3C465 5DA4FBFC 0E1108A8 FD17B448 A6855419 9C47D08F FB10D4B8
Finally the order n of G and the cofactor are:
- n = FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFE BAAEDCE6 AF48A03B BFD25E8C D0364141
- h = 01