Exponential Functions. Exponential Functions and Their Graphs. Example 2. Example 1. Example 3. Graphs of Exponential Functions 9/17/2014


 Anissa Lamb
 5 years ago
 Views:
Transcription
1 Eponential Functions Eponential Functions and Their Graphs Precalculus.1 Eample 1 Use a calculator to evaluate each function at the indicated value of. a) f ( ) 8 = Eample In the same coordinate place, sketch the graph of each function. a) f ( ) f ( ) 5 f ( ) 8 =1/ c) f ( ) 0. 8 =.5 Eample In the same coordinate place, sketch the graph of each function. a) f ( ) f ( ) 5 Graphs of Eponential Functions The basic characteristics of eponential functions y = a and y = a are summarized in Figures. and.4. Graph of y = a, a > 1 Domain: (, ) Range: (0, ) yintercept: (0, 1) Increasing ais is a horizontal asymptote (a 0, as ). Continuous Figure. 1
2 Graphs of Eponential Functions Graph of y = a, a > 1 Domain: (, ) Range: (0, ) yintercept: (0, 1) Decreasing Figure.4 ais is a horizontal asymptote (a 0, as ). Continuous From Figures. and.4, you can see that the graph of an eponential function is always increasing or always decreasing. Graphs of Eponential Functions As a result, the graphs pass the Horizontal Line Test, and therefore the functions are onetoone functions. You can use the following OnetoOne Property to solve simple eponential equations. OnetoOne Property For a > 0 and a 1, a = a y if and only if = y. Eample 4 Solve. a) Eample 5 Describe the graph as a transformation of the graph of f ( ) 4 a) f ( ) 4 c) f ) 1 4 ( f ( ) 4 The Natural Base e In many applications, the most convenient choice for a base is the irrational number e This number is called the natural base. The function given by f() = e is called the natural eponential function. Its graph is shown in Figure.9. Eample 6 Use a calculator to evaluate the function given by f ( ) e at each value of to three decimal places. a) = 6. = 0.4 c) = 7.1 d) = 0.7 Figure.9
3 Eample 7 Applications Sketch the graph of the function s( t) 5e 0.17t Eample 8 On the day of a child s birth, a deposit of $5,000 is made in a trust fund that pays 8.5% interest. Determine the balance in this account on the child s 6 th birthday if the interest is compounded a)quarterly monthly c) continuously Eample 9 6 Ra Let Q represent the mass of radium whose halflife is 160 years. The quantity of radium present after t years is given by 1 t Q 16 / 160 a) Sketch the graph of the function over the interval from t=0 to t=5000. Determine the initial quantity (when t=0) c) Determine the quantity present after 1000 years. Logarithmic Functions Logarithmic Functions and Their Graphs Every function of the form f () = a passes the Horizontal Line Test and therefore must have an inverse function. This inverse function is called the logarithmic function with base a. Precalculus.
4 Eample 1 Use the definition of logarithmic function to evaluate each logarithm at the indicated value of. a) c) d) f ( ) log4, 16 f ( ) log, 64 f ( ) log5, 1 f ( ) log, 1 81 Logarithmic Functions The logarithmic function with base 10 is called the common logarithmic function. It is denoted by log 10 or simply by log. On most calculators, this function is denoted by. Eample Logarithmic Functions Use a calculator to evaluate the function at each value of to three decimal places. f ( ) log a) = 100 = 1/5 c) =.5 d) 4 Eample Simplify. a) log 5 1 log c) log Eample 4 Solve. a) log5 y log516 log( 4 ) log( ) c) log( 4) log 9 4
5 Eample 5 In the same coordinate plane, sketch the graph of each function. a) f ( ) 4 f ( ) log4 Graphs of Logarithmic Functions The basic characteristics of logarithmic graphs are summarized in Figure.16. Graph of y = log a, a 1 Domain: (0, ) Range: (, ) intercept: (1, 0) Increasing Onetoone, therefore has an inverse function Figure.16 Eample 6 Sketch the graph of f ( ) log 4 Identify the vertical asymptote. Eample 7 Describe the graph as a transformation of the graph of ( ) log f a) f ( ) log 1 f ( ) log( ) The Natural Logarithmic Function Eample 8 Use a calculator to evaluate the function to three decimal places. f ( ) ln 1 a) = 7.5 = 0.4 c) =  d) = 5
6 The Natural Logarithmic Function Eample 9 Use the properties of natural logarithms to simplify. 1/ a) ln e ln8 e c) 15ln1 d) ln e 6 Eample 10 Find the domain of each function. a) f ( ) ln( ) f ( ) ln( ) c) f ( ) ln Eample 11 Students in a mathematics class were given an eam and then retested monthly with an equivalent eam. The average scores for the class are given by the human memory model f ( t) log( t 1),0 t 1 where t is time in months. a) What was the average score on the original eam? (t=0) Eample 11 f ( t) log( t 1),0 t 1 What was the average score after months? c) What was the average score after 11 months? Properties of Logarithms Precalculus. 6
7 Change of Base Change of Base Most calculators have only two types of log keys, one for common logarithms (base 10) and one for natural logarithms (base e). Although common logarithms and natural logarithms are the most frequently used, you may occasionally need to evaluate logarithms with other bases. To do this, you can use the following changeofbase formula. Eample 1 Evaluate each using the changeofbase formula with common logs. Approimate to three decimal places. a) log 16 log 5 Eample Evaluate each using the changeofbase formula with natural logs. Approimate to three decimal places. a) log 16 log 5 Properties of Logarithms Eample Write each logarithm in terms of ln and ln5. a) ln10 5 ln 7
8 Eample 4 Find the eact value of each epression without using a calculator. a) log 7 7 ln e ln e Eample 5 Epand each logarithmic epression. a) log y ln Eample 6 Condense each logarithmic epression. a) 1 log 5log( ) c) 4ln( 4) ln 1 log log( 5 ) Eponential & Logarithmic Equations Precalculus.4 Eample 1 Solve. a) 51 ln 5 ln c) d) 5 e 1 e) ln 8 f) log 8
9 Eample Solve each equation and approimate the result to three decimal places if necessary. 5 6 a) e e 4 64 Solve. 5 e Eample Eample 4 Solve the equation and approimate the result to three decimal places. 6 t Eample 5 Solve. e 7e 1 0 Eample 6 Solve. a) ln log4( ) log 4(6 ) Eample 7 Solve the equation and approimate the result to three decimal places. 6 ln 4 c) log(5 1) log 6 log 9
10 Solve. log4 6 9 Eample 8 Eample 9 Solve. log10 log10( 9) 1 Eample 10 You have deposited $1000 in an account that pays 6.5% compounded continuously. How long will it take your money to double? Eample 11 The number y of endangered animal species on a protected wildlife preserve from 1990 to 004 can be modeled by y lnt 10 t 4, where t represents the year, with t=10 corresponding to During which year did the number of endangered animal species reach 4? Introduction Eponential & Logarithmic Models Precalculus.5 The five most common types of mathematical models involving eponential functions and logarithmic functions are as follows. 1. Eponential growth model: y = ae b, b 0. Eponential decay model: y = ae b, b 0. Gaussian model: 4. Logistic growth model: y = y = ae ( /c 5. Logarithmic models: y = a + b ln, y = a + b log 10
11 Introduction Introduction The basic shapes of the graphs of these functions are shown in Figure.. Logistic growth model Natural logarithmic model Common logarithmic model Eponential growth model Eponential decay model Gaussian model Figure. Figure. Eample 1 The population P of a city is given by 0.055t P 95,00e where t=0 represents 001. According to this model, when did the population reach 150,000? Eample In a research eperiment, a population of fruit flies is increasing according to the law of eponential growth. After days there are 15 fruit flies, and after 4 days there are 50 flies. How many flies will there be after 6 days? Eample Estimate the age of a newly discovered fossil in which the ratio of carbon 14 to carbon 1 is 1 R Gaussian Models The Gaussian models are of the form y = ae ( /c. This type of model is commonly used in probability and statistics to represent populations that are normally distributed. The graph of a Gaussian model is called a bellshaped curve. 11
12 Eample 4 The average value of a population can be found from the bellshaped curve by observing where the maimum y value of the function occurs. The value corresponding to the maimum y value of the function represents the average value of the independent variable in this case,. Last year, the math scores for students in a particular math class roughly followed the normal distribution given by ( 74) 114 y 0.099e,0 110 where is the math score. Sketch the graph of this function, and use it to estimate the average math score. Logistic Growth Models Some populations initially have rapid growth, followed by a declining rate of growth, as indicated by the graph in Figure.40. One model for describing this type of growth pattern is the logistic curve given by the function Logistic Growth Models An eample is a bacteria culture that is initially allowed to grow under ideal conditions, and then under less favorable conditions that inhibit growth. where y is the population size and is the time. Figure.40 A logistic growth curve is also called a sigmoidal curve. Eample 5 Eample 5 On a college campus of 7500 students, one student returns from vacation with a contagious and longlasting virus. The spread of the virus is modeled by 7500 y, t 0 0.9t e where y is the total number of students affected after t days. The college will cancel classes when 0% or more of the students are infected y, t 0 0.9t e a) How many students will be infected after 4 days? After how many days will the college cancel classes? 1
13 Eample 6 On the Richter scale, the magnitude R of an I earthquake of intensity I is given by R log I where I 1 0 is the minimum intensity used for comparison. Find the magnitude R of an earthquake of intensity I. a) I 68,400,000 I 4,75,
Algebra 2 Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED
Algebra Unit 8 (Chapter 7) CALCULATORS ARE NOT ALLOWED. Graph eponential functions. (Sections 7., 7.) Worksheet 6. Solve eponential growth and eponential decay problems. (Sections 7., 7.) Worksheet 8.
More information3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS. Copyright Cengage Learning. All rights reserved.
3.2 LOGARITHMIC FUNCTIONS AND THEIR GRAPHS Copyright Cengage Learning. All rights reserved. What You Should Learn Recognize and evaluate logarithmic functions with base a. Graph logarithmic functions.
More informationStudents Currently in Algebra 2 Maine East Math Placement Exam Review Problems
Students Currently in Algebra Maine East Math Placement Eam Review Problems The actual placement eam has 100 questions 3 hours. The placement eam is free response students must solve questions and write
More informationExponential Functions, Logarithms, and e
chapter 3 Starry Night, painted by Vincent Van Gogh in 889. The brightness of a star as seen from Earth is measured using a logarithmic scale. Eponential Functions, Logarithms, and e This chapter focuses
More information4.6 Exponential and Logarithmic Equations (Part I)
4.6 Eponential and Logarithmic Equations (Part I) In this section you will learn to: solve eponential equations using like ases solve eponential equations using logarithms solve logarithmic equations using
More informationMAT12X Intermediate Algebra
MAT12X Intermediate Algebra Workshop I  Exponential Functions LEARNING CENTER Overview Workshop I Exponential Functions of the form y = ab x Properties of the increasing and decreasing exponential functions
More informationMidterm 2 Review Problems (the first 7 pages) Math 1235116 Intermediate Algebra Online Spring 2013
Midterm Review Problems (the first 7 pages) Math 15116 Intermediate Algebra Online Spring 01 Please note that these review problems are due on the day of the midterm, Friday, April 1, 01 at 6 p.m. in
More informationEquations. #110 Solve for the variable. Inequalities. 1. Solve the inequality: 2 5 7. 2. Solve the inequality: 4 0
College Algebra Review Problems for Final Exam Equations #110 Solve for the variable 1. 2 1 4 = 0 6. 2 8 7 2. 2 5 3 7. = 3. 3 9 4 21 8. 3 6 9 18 4. 6 27 0 9. 1 + log 3 4 5. 10. 19 0 Inequalities 1. Solve
More informationMEMORANDUM. All students taking the CLC Math Placement Exam PLACEMENT INTO CALCULUS AND ANALYTIC GEOMETRY I, MTH 145:
MEMORANDUM To: All students taking the CLC Math Placement Eam From: CLC Mathematics Department Subject: What to epect on the Placement Eam Date: April 0 Placement into MTH 45 Solutions This memo is an
More informationSolutions to Midterm #1 Practice Problems
MAT Fall 0 Solutions to Midterm # Practice Problems. Below is the graph of a function y = r(). y = r() Sketch graphs of the following functions: (a) y = r( 3) (b) y = r( ) 3 (c) y = r() + (d) y = r( +
More informationExponential equations will be written as, where a =. Example 1: Determine a formula for the exponential function whose graph is shown below.
.1 Eponential and Logistic Functions PreCalculus.1 EXPONENTIAL AND LOGISTIC FUNCTIONS 1. Recognize eponential growth and deca functions 2. Write an eponential function given the intercept and another
More informationLESSON EIII.E EXPONENTS AND LOGARITHMS
LESSON EIII.E EXPONENTS AND LOGARITHMS LESSON EIII.E EXPONENTS AND LOGARITHMS OVERVIEW Here s what ou ll learn in this lesson: Eponential Functions a. Graphing eponential functions b. Applications of eponential
More informationSECTION 51 Exponential Functions
354 5 Eponential and Logarithmic Functions Most of the functions we have considered so far have been polnomial and rational functions, with a few others involving roots or powers of polnomial or rational
More informationThe numerical values that you find are called the solutions of the equation.
Appendi F: Solving Equations The goal of solving equations When you are trying to solve an equation like: = 4, you are trying to determine all of the numerical values of that you could plug into that equation.
More informationSection 1. Logarithms
Worksheet 2.7 Logarithms and Exponentials Section 1 Logarithms The mathematics of logarithms and exponentials occurs naturally in many branches of science. It is very important in solving problems related
More information8.7 Exponential Growth and Decay
Section 8.7 Exponential Growth and Decay 847 8.7 Exponential Growth and Decay Exponential Growth Models Recalling the investigations in Section 8.3, we started by developing a formula for discrete compound
More informationExponential, Logistic, and Logarithmic Functions
5144_Demana_Ch03pp275348 1/13/06 12:19 PM Page 275 CHAPTER 3 Eponential, Logistic, and Logarithmic Functions 3.1 Eponential and Logistic Functions 3.2 Eponential and Logistic Modeling 3.3 Logarithmic
More information9 Exponential Models CHAPTER. Chapter Outline. www.ck12.org Chapter 9. Exponential Models
www.ck12.org Chapter 9. Eponential Models CHAPTER 9 Eponential Models Chapter Outline 9.1 EXPONENTIAL GROWTH 9.2 EXPONENTIAL DECAY 9.3 REVISITING RATE OF CHANGE 9.4 A QUICK REVIEW OF LOGARITHMS 9.5 USING
More informationChapter 4: Exponential and Logarithmic Functions
Chapter 4: Eponential and Logarithmic Functions Section 4.1 Eponential Functions... 15 Section 4. Graphs of Eponential Functions... 3 Section 4.3 Logarithmic Functions... 4 Section 4.4 Logarithmic Properties...
More informationLogarithmic and Exponential Equations
11.5 Logarithmic and Exponential Equations 11.5 OBJECTIVES 1. Solve a logarithmic equation 2. Solve an exponential equation 3. Solve an application involving an exponential equation Much of the importance
More informationAlso, compositions of an exponential function with another function are also referred to as exponential. An example would be f(x) = 4 + 100 32x.
Exponential Functions Exponential functions are perhaps the most important class of functions in mathematics. We use this type of function to calculate interest on investments, growth and decline rates
More informationExponential and Logarithmic Functions
Chapter 6 Eponential and Logarithmic Functions Section summaries Section 6.1 Composite Functions Some functions are constructed in several steps, where each of the individual steps is a function. For eample,
More information2312 test 2 Fall 2010 Form B
2312 test 2 Fall 2010 Form B 1. Write the slopeintercept form of the equation of the line through the given point perpendicular to the given lin point: ( 7, 8) line: 9x 45y = 9 2. Evaluate the function
More informationSubstitute 4 for x in the function, Simplify.
Page 1 of 19 Review of Eponential and Logarithmic Functions An eponential function is a function in the form of f ( ) = for a fied ase, where > 0 and 1. is called the ase of the eponential function. The
More informationChapter 4. Polynomial and Rational Functions. 4.1 Polynomial Functions and Their Graphs
Chapter 4. Polynomial and Rational Functions 4.1 Polynomial Functions and Their Graphs A polynomial function of degree n is a function of the form P = a n n + a n 1 n 1 + + a 2 2 + a 1 + a 0 Where a s
More informationMPE Review Section III: Logarithmic & Exponential Functions
MPE Review Section III: Logarithmic & Eponential Functions FUNCTIONS AND GRAPHS To specify a function y f (, one must give a collection of numbers D, called the domain of the function, and a procedure
More informationAlgebra. Exponents. Absolute Value. Simplify each of the following as much as possible. 2x y x + y y. xxx 3. x x x xx x. 1. Evaluate 5 and 123
Algebra Eponents Simplify each of the following as much as possible. 1 4 9 4 y + y y. 1 5. 1 5 4. y + y 4 5 6 5. + 1 4 9 10 1 7 9 0 Absolute Value Evaluate 5 and 1. Eliminate the absolute value bars from
More informationName: Date: 2. Find the input of the function f() corresponding to the output f() t = 3to
Name: Date: 1. Find the input of the function f( x) = 8 x+7 corresponding to the output f( x ) = 5.. Find the input of the function f() t = 48 corresponding to the output f() t = 3to t e +1 three decimal
More information6.3 PARTIAL FRACTIONS AND LOGISTIC GROWTH
6 CHAPTER 6 Techniques of Integration 6. PARTIAL FRACTIONS AND LOGISTIC GROWTH Use partial fractions to find indefinite integrals. Use logistic growth functions to model reallife situations. Partial Fractions
More informationCore Maths C3. Revision Notes
Core Maths C Revision Notes October 0 Core Maths C Algebraic fractions... Cancelling common factors... Multipling and dividing fractions... Adding and subtracting fractions... Equations... 4 Functions...
More informationSection 47 Exponential and Logarithmic Equations. Solving an Exponential Equation. log 2. 3 2 log 5. log 2 1.4406
314 4 INVERSE FUNCTIONS; EXPONENTIAL AND LOGARITHMIC FUNCTIONS Section 47 Exponential and Logarithmic Equations Exponential Equations Logarithmic Equations Change of Base Equations involving exponential
More informationBackground Information on Exponentials and Logarithms
Background Information on Eponentials and Logarithms Since the treatment of the decay of radioactive nuclei is inetricably linked to the mathematics of eponentials and logarithms, it is important that
More informationFINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA
FINAL EXAM SECTIONS AND OBJECTIVES FOR COLLEGE ALGEBRA 1.1 Solve linear equations and equations that lead to linear equations. a) Solve the equation: 1 (x + 5) 4 = 1 (2x 1) 2 3 b) Solve the equation: 3x
More informationList the elements of the given set that are natural numbers, integers, rational numbers, and irrational numbers. (Enter your answers as commaseparated
MATH 142 Review #1 (4717995) Question 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Description This is the review for Exam #1. Please work as many problems as possible
More information10.1. Solving Quadratic Equations. Investigation: Rocket Science CONDENSED
CONDENSED L E S S O N 10.1 Solving Quadratic Equations In this lesson you will look at quadratic functions that model projectile motion use tables and graphs to approimate solutions to quadratic equations
More informationPre Calculus Math 40S: Explained!
Pre Calculus Math 0S: Eplained! www.math0s.com 0 Logarithms Lesson PART I: Eponential Functions Eponential functions: These are functions where the variable is an eponent. The first tpe of eponential graph
More information2008 AP Calculus AB Multiple Choice Exam
008 AP Multiple Choice Eam Name 008 AP Calculus AB Multiple Choice Eam Section No Calculator Active AP Calculus 008 Multiple Choice 008 AP Calculus AB Multiple Choice Eam Section Calculator Active AP Calculus
More informationM122 College Algebra Review for Final Exam
M122 College Algebra Review for Final Eam Revised Fall 2007 for College Algebra in Contet All answers should include our work (this could be a written eplanation of the result, a graph with the relevant
More informationPolynomial Degree and Finite Differences
CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson you will learn the terminology associated with polynomials use the finite differences method to determine the degree of a polynomial
More informationMathematics Placement Examination (MPE)
Practice Problems for Mathematics Placement Eamination (MPE) Revised August, 04 When you come to New Meico State University, you may be asked to take the Mathematics Placement Eamination (MPE) Your inital
More informationMath 120 Final Exam Practice Problems, Form: A
Math 120 Final Exam Practice Problems, Form: A Name: While every attempt was made to be complete in the types of problems given below, we make no guarantees about the completeness of the problems. Specifically,
More informationPartial Fractions. and Logistic Growth. Section 6.2. Partial Fractions
SECTION 6. Partial Fractions and Logistic Growth 9 Section 6. Partial Fractions and Logistic Growth Use partial fractions to find indefinite integrals. Use logistic growth functions to model reallife
More informationMATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education)
MATH 095, College Prep Mathematics: Unit Coverage Prealgebra topics (arithmetic skills) offered through BSE (Basic Skills Education) Accurately add, subtract, multiply, and divide whole numbers, integers,
More information7.7 Solving Rational Equations
Section 7.7 Solving Rational Equations 7 7.7 Solving Rational Equations When simplifying comple fractions in the previous section, we saw that multiplying both numerator and denominator by the appropriate
More informationPreSession Review. Part 2: Mathematics of Finance
PreSession Review Part 2: Mathematics of Finance For this section you will need a calculator with logarithmic and exponential function keys (such as log, ln, and x y ) D. Exponential and Logarithmic Functions
More informationFINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
FINAL EXAM REVIEW MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine whether or not the relationship shown in the table is a function. 1) 
More informationMATH ADVISEMENT GUIDE
MATH ADVISEMENT GUIDE Recommendations for math courses are based on your placement results, degree program and career interests. Placement score: MAT 001 or MAT 00 You must complete required mathematics
More informationD.3. Angles and Degree Measure. Review of Trigonometric Functions
APPENDIX D Precalculus Review D7 SECTION D. Review of Trigonometric Functions Angles and Degree Measure Radian Measure The Trigonometric Functions Evaluating Trigonometric Functions Solving Trigonometric
More informationLecture 3 : The Natural Exponential Function: f(x) = exp(x) = e x. y = exp(x) if and only if x = ln(y)
Lecture 3 : The Natural Exponential Function: f(x) = exp(x) = Last day, we saw that the function f(x) = ln x is onetoone, with domain (, ) and range (, ). We can conclude that f(x) has an inverse function
More informationEXPONENTIAL FUNCTIONS 8.1.1 8.1.6
EXPONENTIAL FUNCTIONS 8.1.1 8.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
More informationFor additional information, see the Math Notes boxes in Lesson B.1.3 and B.2.3.
EXPONENTIAL FUNCTIONS B.1.1 B.1.6 In these sections, students generalize what they have learned about geometric sequences to investigate exponential functions. Students study exponential functions of the
More informationLesson 9.1 Solving Quadratic Equations
Lesson 9.1 Solving Quadratic Equations 1. Sketch the graph of a quadratic equation with a. One intercept and all nonnegative yvalues. b. The verte in the third quadrant and no intercepts. c. The verte
More informationGraphing Trigonometric Skills
Name Period Date Show all work neatly on separate paper. (You may use both sides of your paper.) Problems should be labeled clearly. If I can t find a problem, I ll assume it s not there, so USE THE TEMPLATE
More informationSection 37. Marginal Analysis in Business and Economics. Marginal Cost, Revenue, and Profit. 202 Chapter 3 The Derivative
202 Chapter 3 The Derivative Section 37 Marginal Analysis in Business and Economics Marginal Cost, Revenue, and Profit Application Marginal Average Cost, Revenue, and Profit Marginal Cost, Revenue, and
More information15.1. Exact Differential Equations. Exact FirstOrder Equations. Exact Differential Equations Integrating Factors
SECTION 5. Eact FirstOrder Equations 09 SECTION 5. Eact FirstOrder Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Section 5.6, ou studied applications of differential
More informationHomework 2 Solutions
Homework Solutions 1. (a) Find the area of a regular heagon inscribed in a circle of radius 1. Then, find the area of a regular heagon circumscribed about a circle of radius 1. Use these calculations to
More informationReview of Fundamental Mathematics
Review of Fundamental Mathematics As explained in the Preface and in Chapter 1 of your textbook, managerial economics applies microeconomic theory to business decision making. The decisionmaking tools
More informationMATH 31B: MIDTERM 1 REVIEW. 1. Inverses. yx 3y = 1. x = 1 + 3y y 4( 1) + 32 = 1
MATH 3B: MIDTERM REVIEW JOE HUGHES. Inverses. Let f() = 3. Find the inverse g() for f. Solution: Setting y = ( 3) and solving for gives and g() = +3. y 3y = = + 3y y. Let f() = 4 + 3. Find a domain on
More informationCore Maths C2. Revision Notes
Core Maths C Revision Notes November 0 Core Maths C Algebra... Polnomials: +,,,.... Factorising... Long division... Remainder theorem... Factor theorem... 4 Choosing a suitable factor... 5 Cubic equations...
More informationColegio del mundo IB. Programa Diploma REPASO 2. 1. The mass m kg of a radioactive substance at time t hours is given by. m = 4e 0.2t.
REPASO. The mass m kg of a radioactive substance at time t hours is given b m = 4e 0.t. Write down the initial mass. The mass is reduced to.5 kg. How long does this take?. The function f is given b f()
More informationMATH 60 NOTEBOOK CERTIFICATIONS
MATH 60 NOTEBOOK CERTIFICATIONS Chapter #1: Integers and Real Numbers 1.1a 1.1b 1.2 1.3 1.4 1.8 Chapter #2: Algebraic Expressions, Linear Equations, and Applications 2.1a 2.1b 2.1c 2.2 2.3a 2.3b 2.4 2.5
More informationExponential Functions
Eponential Functions Deinition: An Eponential Function is an unction that has the orm ( a, where a > 0. The number a is called the base. Eample:Let For eample (0, (, ( It is clear what the unction means
More informationEQUATIONS and INEQUALITIES
EQUATIONS and INEQUALITIES Linear Equations and Slope 1. Slope a. Calculate the slope of a line given two points b. Calculate the slope of a line parallel to a given line. c. Calculate the slope of a line
More informationDimensional Analysis and Exponential Models
MAT 42 College Mathematics Module XP Dimensional Analysis and Exponential Models Terri Miller revised December 3, 200. Dimensional Analysis The purpose of this section is to convert between various types
More informationTSI College Level Math Practice Test
TSI College Level Math Practice Test Tutorial Services Mission del Paso Campus. Factor the Following Polynomials 4 a. 6 8 b. c. 7 d. ab + a + b + 6 e. 9 f. 6 9. Perform the indicated operation a. ( +7y)
More informationSection 1.1 Linear Equations: Slope and Equations of Lines
Section. Linear Equations: Slope and Equations of Lines Slope The measure of the steepness of a line is called the slope of the line. It is the amount of change in y, the rise, divided by the amount of
More informationCHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises
CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =
More informationDimensional Analysis; Exponential and Logarithmic Growth/Decay
MAT 42 College Mathematics Module #5 Dimensional Analysis; Exponential and Logarithmic Growth/Decay Terri Miller Spring 2009 revised November 7, 2009. Dimensional Analysis The purpose of this section is
More informationAlgebra 1 Course Information
Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through
More informationUnit 3  Lesson 3. MM3A2  Logarithmic Functions and Inverses of exponential functions
Math Instructional Framework Time Frame Unit Name Learning Task/Topics/ Themes Standards and Elements Lesson Essential Questions Activator Unit 3  Lesson 3 MM3A2  Logarithmic Functions and Inverses of
More informationChapter 7 Outline Math 236 Spring 2001
Chapter 7 Outline Math 236 Spring 2001 Note 1: Be sure to read the Disclaimer on Chapter Outlines! I cannot be responsible for misfortunes that may happen to you if you do not. Note 2: Section 7.9 will
More informationAP Calculus AB 2004 Scoring Guidelines
AP Calculus AB 4 Scoring Guidelines The materials included in these files are intended for noncommercial use by AP teachers for course and eam preparation; permission for any other use must be sought from
More informationSection 59 Inverse Trigonometric Functions
46 5 TRIGONOMETRIC FUNCTIONS Section 59 Inverse Trigonometric Functions Inverse Sine Function Inverse Cosine Function Inverse Tangent Function Summar Inverse Cotangent, Secant, and Cosecant Functions
More information135 Final Review. Determine whether the graph is symmetric with respect to the xaxis, the yaxis, and/or the origin.
13 Final Review Find the distance d(p1, P2) between the points P1 and P2. 1) P1 = (, 6); P2 = (7, 2) 2 12 2 12 3 Determine whether the graph is smmetric with respect to the ais, the ais, and/or the
More informationSection 14 Functions: Graphs and Properties
44 1 FUNCTIONS AND GRAPHS I(r). 2.7r where r represents R & D ependitures. (A) Complete the following table. Round values of I(r) to one decimal place. r (R & D) Net income I(r).66 1.2.7 1..8 1.8.99 2.1
More informationSection 33 Approximating Real Zeros of Polynomials
 Approimating Real Zeros of Polynomials 9 Section  Approimating Real Zeros of Polynomials Locating Real Zeros The Bisection Method Approimating Multiple Zeros Application The methods for finding zeros
More informationHow To Understand And Solve Algebraic Equations
College Algebra Course Text Barnett, Raymond A., Michael R. Ziegler, and Karl E. Byleen. College Algebra, 8th edition, McGrawHill, 2008, ISBN: 9780072867381 Course Description This course provides
More informationSolving Compound Interest Problems
Solving Compound Interest Problems What is Compound Interest? If you walk into a bank and open up a savings account you will earn interest on the money you deposit in the bank. If the interest is calculated
More informationSolving Quadratic Equations by Graphing. Consider an equation of the form. y ax 2 bx c a 0. In an equation of the form
SECTION 11.3 Solving Quadratic Equations b Graphing 11.3 OBJECTIVES 1. Find an ais of smmetr 2. Find a verte 3. Graph a parabola 4. Solve quadratic equations b graphing 5. Solve an application involving
More informationHigher. Polynomials and Quadratics 64
hsn.uk.net Higher Mathematics UNIT OUTCOME 1 Polnomials and Quadratics Contents Polnomials and Quadratics 64 1 Quadratics 64 The Discriminant 66 3 Completing the Square 67 4 Sketching Parabolas 70 5 Determining
More informationa. all of the above b. none of the above c. B, C, D, and F d. C, D, F e. C only f. C and F
FINAL REVIEW WORKSHEET COLLEGE ALGEBRA Chapter 1. 1. Given the following equations, which are functions? (A) y 2 = 1 x 2 (B) y = 9 (C) y = x 3 5x (D) 5x + 2y = 10 (E) y = ± 1 2x (F) y = 3 x + 5 a. all
More information1 Determine whether an. 2 Solve systems of linear. 3 Solve systems of linear. 4 Solve systems of linear. 5 Select the most efficient
Section 3.1 Systems of Linear Equations in Two Variables 163 SECTION 3.1 SYSTEMS OF LINEAR EQUATIONS IN TWO VARIABLES Objectives 1 Determine whether an ordered pair is a solution of a system of linear
More informationReview of Intermediate Algebra Content
Review of Intermediate Algebra Content Table of Contents Page Factoring GCF and Trinomials of the Form + b + c... Factoring Trinomials of the Form a + b + c... Factoring Perfect Square Trinomials... 6
More informationSome Lecture Notes and InClass Examples for PreCalculus:
Some Lecture Notes and InClass Examples for PreCalculus: Section.7 Definition of a Quadratic Inequality A quadratic inequality is any inequality that can be put in one of the forms ax + bx + c < 0 ax
More informationSummer Math Exercises. For students who are entering. PreCalculus
Summer Math Eercises For students who are entering PreCalculus It has been discovered that idle students lose learning over the summer months. To help you succeed net fall and perhaps to help you learn
More informationIntegral Calculus  Exercises
Integral Calculus  Eercises 6. Antidifferentiation. The Indefinite Integral In problems through 7, find the indicated integral.. Solution. = = + C = + C.. e Solution. e =. ( 5 +) Solution. ( 5 +) = e
More information9.3 OPERATIONS WITH RADICALS
9. Operations with Radicals (9 1) 87 9. OPERATIONS WITH RADICALS In this section Adding and Subtracting Radicals Multiplying Radicals Conjugates In this section we will use the ideas of Section 9.1 in
More informationMA107 Precalculus Algebra Exam 2 Review Solutions
MA107 Precalculus Algebra Exam 2 Review Solutions February 24, 2008 1. The following demand equation models the number of units sold, x, of a product as a function of price, p. x = 4p + 200 a. Please write
More informationCollege Algebra. George Voutsadakis 1. LSSU Math 111. Lake Superior State University. 1 Mathematics and Computer Science
College Algebra George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 111 George Voutsadakis (LSSU) College Algebra December 2014 1 / 91 Outline 1 Exponential
More informationGraphing calculators Transparencies (optional)
What if it is in pieces? Piecewise Functions and an Intuitive Idea of Continuity Teacher Version Lesson Objective: Length of Activity: Students will: Recognize piecewise functions and the notation used
More informationWeek 2: Exponential Functions
Week 2: Exponential Functions Goals: Introduce exponential functions Study the compounded interest and introduce the number e Suggested Textbook Readings: Chapter 4: 4.1, and Chapter 5: 5.1. Practice Problems:
More information25 Rational Functions
5 Rational Functions Find the domain of each function and the equations of the vertical or horizontal asymptotes, if any 1 f () = The function is undefined at the real zeros of the denominator b() = 4
More informationStart Accuplacer. Elementary Algebra. Score 76 or higher in elementary algebra? YES
COLLEGE LEVEL MATHEMATICS PRETEST This pretest is designed to give ou the opportunit to practice the tpes of problems that appear on the collegelevel mathematics placement test An answer ke is provided
More informationSection 23 Quadratic Functions
118 2 LINEAR AND QUADRATIC FUNCTIONS 71. Celsius/Fahrenheit. A formula for converting Celsius degrees to Fahrenheit degrees is given by the linear function 9 F 32 C Determine to the nearest degree the
More information12.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following:
Section 1.6 Logarithmic and Exponential Equations 811 1.6 Logarithmic and Exponential Equations PREPARING FOR THIS SECTION Before getting started, review the following: Solve Quadratic Equations (Section
More informationIn this this review we turn our attention to the square root function, the function defined by the equation. f(x) = x. (5.1)
Section 5.2 The Square Root 1 5.2 The Square Root In this this review we turn our attention to the square root function, the function defined b the equation f() =. (5.1) We can determine the domain and
More informationTo Be or Not To Be a Linear Equation: That Is the Question
To Be or Not To Be a Linear Equation: That Is the Question Linear Equation in Two Variables A linear equation in two variables is an equation that can be written in the form A + B C where A and B are not
More information1.6. Piecewise Functions. LEARN ABOUT the Math. Representing the problem using a graphical model
. Piecewise Functions YOU WILL NEED graph paper graphing calculator GOAL Understand, interpret, and graph situations that are described b piecewise functions. LEARN ABOUT the Math A cit parking lot uses
More information4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS
Functions Modeling Change: A Preparation for Calculus, 4th Edition, 2011, Connally 4.1 INTRODUCTION TO THE FAMILY OF EXPONENTIAL FUNCTIONS Functions Modeling Change: A Preparation for Calculus, 4th Edition,
More informationMATHEMATICS: PAPER I. 5. You may use an approved nonprogrammable and nongraphical calculator, unless otherwise stated.
NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 015 MATHEMATICS: PAPER I Time: 3 hours 150 marks PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY 1. This question paper consists of 1 pages and an Information
More information